

Coordination Chemistry Reviews 142 (1995) 123–145

5. Platinum 1992

Peter K. Byers

CONTENTS

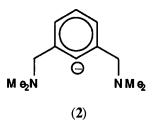
INTRODUCTION			
5.1	PLATINUM(I	V)	123
5.2		II)	125
5.3	PALLADIUM	(Í)	126
	5.3.1	Complexes with phosphine donor ligands	126
	5.3.2	Complexes with nitrogen donor ligands	132
	5.3.3	Complexes with sulfur group donor ligands	
	5.3.4	Complexes with mixed donor ligands	
5.4	PLATINUM(I)	141
5.5))	142
REFERENCES			142

INTRODUCTION

The coordination chemistry of platinum reported during the year 1992 has been reviewed. Although this account does not intend or claim to be comprehensive, examples have been selected to represent important features. Only the primary journals are covered and were searched using BIDS (Bath Information and Data Service) for both platinum (and related) as a keyword and being present in the title. The review covers the chemistry of platinum in its $0 \rightarrow +4$ oxidation states, but does not include the catalytic activity of platinum complexes, complexes containing only Pt-C bonds or complexes containing nucleotide or nucleoside bases. Classification of the complexes is according to the oxidation state and donor atom. For complexes containing mixed donor sets the priority ordering P>N>S applies, and neutral donors have priority over charged donor atoms; neutral, mixed donor didentate ligands are treated separately.

5.1 PLATINUM(IV)

The reaction of iodomethane with the platinum(II) complex [PtMe₂{(pz)₂CHMe-N,N'}] (pz = pyrazol-1-yl) to give the oxidative addition product [PtMe₃I{(pz)₂CHMe-N,N'}] has been

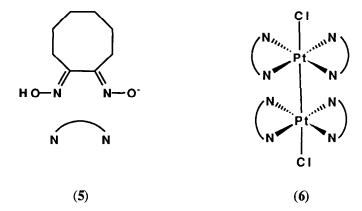

reported. The complex was fully characterised, and ^{1}H NMR spectroscopic data indicated a solution state structure with the bridgehead methine proton adjacent to the iodine atom. The complex adopts this configuration in the solid state also, as determined from an X-ray structural study, with I···H = 3.1Å [1].

The reduction of platinum(IV) complexes of the form $[PtCl_4(N-N)]$ (N-N = N,N'-chelating diamine ligand) by $[Fe(\eta^5-C_5H_5)_2]$, I⁻, $[Pt(NH_2Et)_4]^{2+}$ or $[Pt(en)(NH_2Et)_2]^{2+}$ has been investigated. The reactions obey second or third order rate laws, and the rate constants increase with increasing steric hindrance at the amine ends of the N-N ligand [2].

Treatment of the platinum(II) complex of the macrocycle 6,13-diammonio-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane (1 : R = H) with Cl_2 in aqueous solution yielded not only the expected *trans*-dichloroplatinum(IV) complex, but also resulted in complete chlorination of the pendent primary amines. The product formed $[PtCl_2(1: R = Cl)](ClO_4)_2$ was characterised by a crystal structure analysis, and was found to undergo slow de-chlorination to produce *trans*- $[PtCl_2(1: R = H)](ClO_4)_2$, also characterised by an X-ray structural analysis [3].

$$R_2N$$
 H
 N
 N
 H
 N
 H
 N
 H
 N
 H
 N
 H

In an interesting report, X-ray photoelectron spectroscopy was employed to determine, and thus compare, the Pt 4f binding energies of the platinum centre in complexes containing the tridentate, monoanionic ligand $[C_6H_3(CH_2NMe_2)_2-2,6]$ (2). As the exact positions of the Pt 4f peaks are a direct indication of the platinum oxidation state, XPS spectra of the complexes $[Pt^{II}(2)]$, $[Pt^{IV}Cl_3(2)]$ and $[PtI(2)(\eta^1-I_2)]$ were used to assign a formal oxidation state of +2 for the complex $[PtI(2)(\eta^1-I_2)]$ [4].


Treatment of the organoplatinum(II) complex [$\{PtMe_2(\mu-SMe_2)\}_2$] with imines (C₆F₅)CH=NCH₂(2-XC₆H₄) (X = H, Cl, Br) gave selective activation of the C-F bond to produce the organo-platinum(IV) complex (3) [5].

5.2 PLATINUM(III)

Heating a solution of $K_2[Pt(NO_2)_4]$ in a 2:1 mixture of glacial acetic acid and 1M perchloric acid in air, has been reported to afford the yellow platinum(III) complex $[Pt_2(CH_3CO_2)_4(H_2O)_2](ClO_4)_2$ (4). The solid state structure of this complex was determined by a single crystal X-ray analysis, which revealed an extremely short M-M bond of 2.3905Å [6].

Controlled chlorination of platinum(II) complexes containing the C_8 -carbocyclic α -dioximato ligand $\{C_8H_{12}(=NO)_2H\}^-$ (N-N) (5), or its C_{12} analogue $\{C_{12}H_{20}(=NO)_2H\}^-$, with PhICl₂ or p-ClC₆H₄ICl₂ gives a 3:1 mixture of $[Pt^{III}(N-N)_2Cl]_2$ and $[Pt^{IV}(N-N)_2Cl]_2$. From this mixture, crystalline $[Pt^{III}(N-N)_2Cl]_2$ (6) was isolated, and its solid state structure determined from a crystallographic study. The complex (6) reacts with further oxidant to produce $[Pt^{IV}(N-N)_2Cl_2]$, and disproportionates slowly, over several weeks, to $[Pt^{II}(N-N)_2]$ and $[Pt^{IV}(N-N)_2Cl_2]$ [7].

The platinum(II) complex dimesitylplatinum(2,2'-bipyridine) is reported to undergo an electrochemically reversible oxidation at ca. +0.4V ($vs. Fc/Fc^+$) to give a reactive Pt^{III} cation [8]. A single crystal of [Pt(en)₂](HSq)₂ (HSq = hydrogen squarate) has been X-irradiated and studied by EPR spectroscopy. The g and ¹⁹⁵Pt hyperfine tensors obtained from the angular dependence of the spectrum are consistent with the trapping of a Pt(III) complex, proposed to be [Pt(en)₂(Sq)](HSq) [9].

5.3 PLATINUM(II)

5.3.1 Complexes with phosphine donor ligands

Methyl- and halogeno-platinum(II) complexes, containing the diphosphine ligand $(Ph_2PCH_2)_2C=CH_2$ (L) have been reported. The dihalogen complexes $[PtX_2(L)]$, upon treatment with MeLi, were converted to the corresponding dimethylplatinum(II) complex $[PtMe_2\{(Ph_2PCH)_2CMe\}]^-$, containing a symmetric, anionic diphosphine. Whilst treatment of $[PtX_2(L)]$ with Cl_2 (X = Cl) or MeI (X = Me) afforded the corresponding platinum(IV) oxidative addition products $[PtCl_4(L)]$ and $[PtMe_3I(L)]$, which were both unstable with respect to reductive elimination. The anionic complex produced above, $[PtMe_2\{(Ph_2PCH)_2CMe\}]^-$, reacts with electrophiles to afford the neutral complexes $[PtMe_2(Ph_2PCHRCMe=CHPPh_2)]$ (R = Me, PhCH₂, Me₃Si, Ph₂P) [10].

The preparation of (diphenylphosphino)indene (L) (7), isolated as two isomers (7a) and (7b), has been reported. Using both isomeric forms, a series of platinum complexes of the type $[PtCl_xMe_yL_2]$ (x+y = 2) has been isolated and characterised. For the complexes of (7a), two pairs of diastereoisomers could be distinguished by NMR spectroscopy [11].

The reaction of [PtRCl(cod)] with Tl[C₅H₄PPh₂] to yield complexes of the form [Pt₂R₂(μ -C₅H₄PPh₂)₂] (R = Me, Et, Np, Ph) has been described. For R = Me and R = Np the solid state structures have been determined from single crystal X-ray analyses. For the former, a structure exhibiting an η^5 - and an η^1 -C₅H₄ moiety is observed (8), whilst for the latter, both cyclopentadienyl rings are bound in an η^5 - fashion (9). Further, an equilibrium between the two forms in solution has been proposed [12].

$$\begin{array}{c} Ph_2 \\ Pt \\ Me \end{array}$$

$$\begin{array}{c} Ph_2 \\ Ph \\ Ph_2 \end{array}$$

$$\begin{array}{c} Ph \\ Pt \\ Ph \\ \end{array}$$

$$\begin{array}{c} Ph \\ Pt \\ Ph_2 \end{array}$$

$$\begin{array}{c} Ph \\ Pt \\ \end{array}$$

$$\begin{array}{c} Ph \\ Ph \\ \end{array}$$

A convenient method for the synthesis of bis(acyl)platinum(II) complexes has been reported. Thus, treatment of trans-[Pt(COR)(X)(PPh₂)₂] (R = Me, X = Br; R = Et, X = Cl; R = Ph, X = Cl) with ZnR'₂ (R' = Et, Ph) in benzene at 25°C afforded the mono-acyl complexes trans-[Pt(COR)(R')(PPh₃)₂]. These complexes underwent subsequent carbonylation at 25°C to give the bis-acyl compounds cis-[Pt(COEt)₂(PPh₃)₂] and cis-[Pt(COPh)(COEt)(PPh₃)₂] [13].

Nucleophilic substitution of the σ -vinyl-Pt(II) triflates (10) with CO produced the cationic σ -vinyl Pt(II) carbonyls (11), which subsequently reacted with sodium alkoxides to give the neutral σ -alkoxycarbonyl σ -vinyl Pt(II) complexes (12). Reaction of (10: $R^1 = R^2 = H$) with NaOEt, however, produced the σ -vinyl Pt(II) hydride *trans*-[Pt(H){C(Me)=CH₂}(PPh₃)₂] rather than the expected ethoxide. All complexes were fully characterised, including a single crystal *X*-ray structure analysis of (12: R = Et, $R^1 = Me$, $R^2 = H$) [14].

The reaction of ethyl diazoacetate with $[PtX_2L_2]$ (X = Cl, Br, I; $L_2 = cod$, $2PPh_3$, dppm, dppp, dppp, dppp, dppp) has been reported to produce the corresponding complexes $[PtX(CHXCO_2Et)L_2]$ as a racemic mixture. When optically active complexes $[PtX_2L^*]$ (X = Cl, I; $L^* = for example$, R, R-DIOP) were treated similarly, analogous complexes were obtained as mixtures of diastereoisomers, but in different proportions. The major diastereoisomer of $[PtCl(CHClCO_2Et)(R,R$ -DIOP)] was separated by fractional crystallisation and its structure determined from an X-ray analysis [15].

The synthesis of electron deficient (fluoroaryl)- and (fluoroalkyl)-phosphine complexes of bis-aryl-platinum(II) has been described [16]. Reaction of $[Pt(\eta^2-C_2H_4)(L_2)]$ ($L_2 = Cy_2P(CH_2)_nPCy_2$, $Bu'_2P(CH_2)_nPBu'_2$ (n = 2,3), $o-Bu'_2PCH_2(C_6H_4)CH_2PBu'_2$ with non-coordinating acids produces a series of cationic complexes which adopt structures exhibiting *cis* ethene/hydride ligands (13), or a 2-electron, 3-centre agostic interaction (14). The complexes were characterised by 1H , ^{13}C and ^{31}P NMR spectroscopy and for (14: $L_2 = Bu'_2P(CH_2)_3PBu'_2$) the structure was determined by single crystal *X*-ray crystallography [17].

(13)
$$L_2=Cy_2P(CH_2)_nPCy_2$$
 (n=1,2) (14) $L_2=Bu_2^tP(CH_2)_3PBu_2^t$ $o-(Bu_2^tPCH_2)_2PGH_2$

The preparation of $(\pi\text{-allyl})$ platinum carbonate complexes $[(\eta^3\text{-}2\text{-MeC}_3H_4)\text{-Pt}(PMe_3)_2]^+[OCOOR]^-$ (R = Me, H) has been reported [18]. Treatment of the complex trans- $[Pt(CH=C=CH_2)(Br)(PPh_3)_2]$ with amines or hydrazine results in regionselective addition to the β -carbon of the σ -allenyl group. Thus, reaction with amines produced η^3 -azatrimethylenemethane derivatives (15), whilst hydrazine gave a platinapyrazoline species (16) [19].

A series of acetylide-bridged, dinuclear Pt-Pt and Pt-Pd complexes has been prepared by reaction of cis-[Pt(C \equiv CR)₂L₂] (R = Ph, 'Bu; L₂ = 2PPh₃, dppe, cod) with cis-[M(C₆F₅)₂(thf)₂] (M = Pd, Pt). The complexes, of the general form [{L₂Pt(C \equiv CR)₂}M(C₆F₅)₂] (17), possess RC \equiv C-Pt-C \equiv CR groups acting as a didentate ligand to 'M(C₆F₅)₂'. Further, the substrate cis-[M(C₆F₅)₂(thf)₂] reacted with cis-[Pt(C₆F₅)₂(C \equiv CR)₂]²⁻ and [Pt(C₆F₅)(C \equiv CR)₃]²⁻ (R = Ph, 'Bu) to give the anionic products [(C₆F₅)₂Pt(μ -C \equiv CR)₂M(C₆F₅)₂]²⁻ (18) and [(C₆F₅)(C \equiv CR)Pt(μ -C \equiv CR)₂Pt(C₆F₅)₂]²⁻, respectively. The crystal structures of the complexes [{(dppe)Pt(C \equiv CPh)₂}Pt(C₆F₅)₂] and [(C₆F₅)₂Pt(μ -C \equiv CPh)₂Pt(C₆F₅)₂] were also established [20]. Synthesis of the heteronuclear, μ -ethynediyl complexes [Cl(P₃P)₂MC \equiv CM'(PR₃)₂Cl] (M = Pt, M' = Pd : R = Me, Et, "Bu) has been reported [21].

$$C_6F_5$$
 C_6F_5
 C_6F_5

An investigation into the reaction of disilane (H₃SiSiH₃) and 1,2-dimethyldisilane (MeH₂SiSiH₂Me) with *cis*-[PtH₂(dcpe)] has been reported, including the first isolated example of a platinum complex containing terminal di-silanyl (Si₂H₅) groups. Thus, reaction of *cis*-[PtH₂(dcpe)] with H₃SiSiH₃, for example, gave the di-silanyl complex *cis*-[Pt(Si₂H₅)₂(dcpe)], which reacted with further *cis*-[PtH₂(dcpe)] to afford [Pt(µ-Si₂H₅)(dcpe)]₂ [22]. In related reports, [Pt(PEt₃)₃] when treated with HMe₂SiSiH₂Me gave *cis*-[Pt(SiMe₂H)₂(PEt₃)₂] [23], and [Pt(PEt₃)₃] with ArSiH₃ (Ar = Ph, p-tolyl, mesityl) gave *cis*-[Pt(SiArH₂)₂(PEt₃)₂] [24]. The platinum(0) species [Pt(PEt₃)₃] reacted with ClMe₂GeGeMe₂Cl and Me₂GeCl₂, *via* oxidative addition reactions, to give *cis*/*trans*-[Pt(GeMe₂Cl)₂(PEt₃)₂] and *trans*-[Pt(GeMe₂Cl)Cl(PEt₃)₂], respectively; the solid state structure of *cis*-[Pt(GeMe₂Cl)₂(PEt₃)₂] was also reported [25].

Photolysis of $[Pt(C_2O_4)(PEt_3)_2]$ in the presence of amides generates compounds trans- $[PtH(HNR)(PEt_3)_2]$ (R = SO_2CF_3 , COCF₃). Similarly, reaction of the amides with trans- $[PtH(Me)(PEt_3)_2]$, cis- $[PtMe_2(PEt_3)_2]$ and $[PtMe_2(cod)]$ affords trans- $[PtH(HNR)(PEt_3)_2]$, $[PtMe(HNR)(PEt_3)_2]$ and [PtMe(HNR)(cod)] respectively [26].

Treatment of $[PtCl_2(PEt_3)_2]$ with diphosphadithiotetrazocines, 1,5-R₄P₂N₄S₂, affords a series of platinum(II) complexes *trans*- $[PtCl_2(PEt_3)(R_4P_2N_4S_2)]$ (R = Me, Et, Ph) in which the P₂N₄S₂ ligand is bound *via* nitrogen (19). The dithiatetrazocine, 1,5- $(Me_2NC)_2N_4S_2$, and the trithiatetrazocine, PhCN₄S₃NPPh₃, also reacted with $[PtCl_2(PEt_3)_2]$ to give the complexes $[PtCl_2(PEt_3)_3(Me_2NC)_2N_4S_2]$ (20) and $[PtCl_2(PEt_3)_3(PhCN_4S_3NPPh_3)]$, respectively, which possess the thiatetrazocine ligand bound through nitrogen [27].

The new metallocycles (21) and (22) have been prepared by reaction of cis-[PtCl₂L₂] (L₂ = 2PPh₃, 2PMePh₂, 2PEt₂Ph, 2PEt₃, 2P(NEt₂)Ph₂, dppm, dppe, dppp, dppb, cod) with N,N'-diphenylsulfamide or N,N',P-triphenylphosphonic diamide, respectively, and an excess of Ag₂O. The X-ray crystal structure of (21: L₂ = cod) was reported also [28]. In a related report, the reaction of N,N'-diphenylthiourea with cis-[PtCl₂L₂] in the presence of Ag₂O afforded complexes (23); the presence of a flat Pt-S-C-N ring being established from an X-ray structural analysis of (23: L₂ = 2PPh₃) [29].

A series of mononuclear, pyridine-2-thiolato (pyS) complexes [Pt(pyS)₂(PPh₃)₂], [PtCl(pyS)(PPh₃)] and [Pt(pyS)₂(PPh₃)], exhibiting a variety of coordination modes, have been synthesised [30]. Dinuclear platinum(II) complexes, of the general formula [Pt₂Cl₂(μ -ER')(μ -pz)(PR₃)₂] (E = O, S, Se, Te), containing both bridging N,N-pyrazolato and group 16 donors, have been prepared and fully characterised [31]. Mono- and di-nuclear platinum(II) complexes containing the anionic tetrakis(pyrazol-1-yl)borato ligand, [B(pz)₄]⁻, have been reported [32].

Complexes (24), containing a dianionic O,O-donor set, have been prepared by reaction of cis-[PtCl₂L₂] (L = 2PPh₃, PMePh₂, P(CH₂Ph)Ph₂, dppe, dppp, dppb) with phenylphosphonic acid {P(O)(OH)₂Ph}, in the presence of an excess of Ag₂O. The solid state structure of (24: L₂ = 2PMe₂Ph) was determined, and interestingly, from an X-ray structure determination, a decomposition product of (24: L₂ = 2P(CH₂Ph)Ph) was found to be the diorthometallated complex (25) [33].

The triflate complex [Pt(OTf)₂(dppp)] has been prepared by reaction of the corresponding dichloride with methyltriflate [34]. Reaction of [Pt(SC₅H₉NMe)₂(dppe)] with [PtCl₂(dppe)], in organic solvents containing trace quantities of phosgene as an impurity, produced the dinuclear cation [Pt₂(μ -H)(μ -S)(dppe)₂]⁺, characterised by an *X*-ray diffraction study [35]. A series of dichloroplatinum(II) complexes containing dithiolato ligands has been reported. The complexes were prepared by treating [PtCl₂L₂] (L₂ = dppm, dppe, dppp, dppb, dcpe) with difunctional thiols (1,2-ethandithiol, 1,3-propanedithiol and 1,2-benzenedithiol) in the presence of base [36].

Mononuclear complexes [PtCl₂L₂] containing chiral bis-phosphine ligands (L₂ = S-prolophos, R-butaphos; S-prolophos = (S)-N-(diphenylphosphino)-2-{(diphenylphosphinoxy)-methyl}pyrrolidine and R-butaphos = (R)-1-(diphenylphosphinoxy)-2-{N-ethyl-N-(diphenylphosphinoxy)-2-{N-ethyl-N-(diphenylphosphino)amino}butane) have been prepared and characterised by 1 H, 13 C, 31 P, 195 Pt and 2-D correlation NMR spectroscopy. In each case, only one conformer is observed in solution, and the solid state structure of [PtCl₂(S-prolophos)] was evaluated [37]. The new tetra-tertiary phosphine ligand (26) has been prepared, and reacts with platinum(II) substrates to form the complex [CH(CH₂PPh₂)₂PtCl₂]₂ [38]. The symmetrical diphosphene ligand [2,4,6-(CF₃)₃C₆H₂]₂P₂ reacts to form a complex containing the 'PtCl₂(PEt₃)' fragment, in which the phosphene ligand is η^{1} -bound [39].

Reaction of *endo*-3-diphenylphosphino-(1R)-(+)-camphor (L) with [PtCl₂(COD)] and [PtCl₂(NCPh)₂] gives *cis*-[PtCl₂L₂] and *trans*-[PtCl₂L₂] (27), respectively, possessing *endo*-PPh₂ groups. Complexes of the form [PtCl₂L₂] were also formed by heating the bis-camphorphosphine enolate [Pt(PPh₂C₁₀H₁₄O)₂] with HCl [40].

The cyclodiphosphazane cis-['BuNP(OPh)]₂ (L) reacts with Pt(II) substrates to afford the mononuclear complex [PtCl₂L₂] (28), in which the cyclodiphosphazane is bound to Pt in a monodentate fashion through phosphorus [41]. Metallacrown ether complexes, of the form [PtCl₂{Ph₂P(CH₂CH₂O)_nCH₂CH₂PPh₂}] (n = 3-5) have been prepared, and solid state structural determinations have been reported for the complexes with n = 4 and 5 [42]. Several dinuclear

Pt(II) complexes containing 1,1,4,7,10,10-hexaphenyl-1,4,7,10,tetraphosphadecane (P4) (29) have been synthesised and characterised by spectroscopy and single crystal X-ray crystallography. The complexes are of the form *rac*- or *meso*-[Pt₂Cl₃P₄]X, or the thermodynamically more stable form *cis*, *rac*- or *cis*, *meso*-[Pt₂Cl₄P₄] [43].

5.3.2 Complexes with nitrogen donor ligands

The new bis-phenylplatinum(II) complexes [PtPh₂L₂] (L₂ = 3,3'-bipyridazine, 4,4'-bipyrimidine, 2,2'-bipyrazine, 1,4,7,10-tetraazaphenanthrene) have been prepared and studied by emission and absorption spectroscopy. The one and two-electron reduced states were generated electrochemically, and the ESR spectrum of the paramagnetic intermediates was measured and found to be consistent with the formulation $Pt^{II}/(L^{-})$ [44]. In a separate report, complexes (30-32) were prepared, and the absorption spectra and luminescence properties described [45].

The preparation of a series of pyrazolyl complexes of general formulation $[PtR_2(HL)_2]$ {R = C₆F₅, HL = Hpz, Hdmpz (3,5-dimethylpyrazole); R = C₆Cl₅, HL = dmpz} and $[NBu_4][Pt(C_6F_5)_2(IHpz)]$ has been reported. Deprotonation of $[Pt(C_6F_5)_2(HL)_2]$ (HL = Hpz, Hdmpz) gives the pyrazole-pyrazolato complexes $[NBu_4][M(C_6F_5)_2(L)(HL)]$ (33), exhibiting identical pyrazolyl rings as determined by IR and NMR spectroscopic data and an X-ray diffraction study of (33: HL = Hpz) [46].

Treatment of the bridging hydroxy complex $[\{Pt(C_6F_5)_2(\mu\text{-OH})\}_2]^{2-}$ with azoles in benzene produces the doubly bridged anions $[\{Pt(C_6F_5)_2\}_2(\mu\text{-OH})(\mu\text{-}L_2)]^{2-}$ (L₂ = pyrazolate, 3,5-dimethylpyrazolate, 3-methylpyrazolate, indazolate), whilst the same reaction in methanol gives

the di- μ -azolate anions $[\{Pt(C_6F_5)_2(\mu-L_2)\}_2]^2$. Complexes of the latter type were alternatively prepared by reaction of $[\{Pt(C_6F_5)_2(\mu-OMe)\}_2]^2$ with the respective azolates in methanol, and an X-ray structural determination of (34) established the dinuclear nature of the anion $[\{Pt(C_6F_5)_2\}_2(\mu-OH)(\mu-L_2)]^2-[47]$.

The preparation, physical properties and photo-physical properties of $[Pt(bph)(Et_2S)]_2$, $[Pt(bph)(MeCN)_2]$, [Pt(bph)(en)] and $[Pt(bph)(py)_2]$ (bph = doubly deprotonated biphenyl) have been described [48]. In a series of papers, a range of neutral (35) and cationic (36) 5-coordinate platinum(II) complexes were prepared and characterised, in some instances by single crystal X-ray diffraction [49-52]. In a separate, but related report, features essential to the formation of 5-coordinate platinum(II) complexes were noted, namely the presence within the coordination sphere of a strong π -accepting ligand [53].

(35)

The cationic complex $[Pt(\eta^2-C_2H_4)Cl(tmed)]^+$ reacts with carbon nucleophiles (HL = acetylacetone, ethylacetoacetate, diethylmalonate) in the presence of base to give the corresponding addition products $[Pt(CH_2CH_2L)Cl(tmed)]$ (37), possessing a Pt-C σ -bond. Treatment of the complexes with acid (HCl or HClO₄) gave the ethylated nucleophile and $[PtCl_2(tmed)]$ [54].

N = imed
$$C = 0$$
 $C = 0$
 C

The activation of aromatic C-X bonds by the organoplatinum(II) complex $[Pt_2Me_4(\mu-SMe_2)_2]$ has been reported [55, 56]. Thus, for example, the ligand $Me_2NCH_2CH_2N=CH(C_6F_5)$ reacts with $[Pt_2Me_4(\mu-SMe_2)_2]$ to initially form the organoplatinum(II) complex (38), which reacts further to produce the platinum(IV) complex (39).

In contrast, analogous reactions with the ligands $Me_2NCH_2CH_2N=CHAr$ (Ar = 2,3-, 2,4- or 2,6- $C_6H_3F_2$) gave the N,N'-bound complexes [Pt^{II}Me₂(Me₂NCH₂CH₂N=CHAr)] and subsequently, the compounds [Pt^{II}Me-(Me₂NCH₂CH₂N=CH)(C₆H₂F₂)], in which C-H activation had occurred [55].

The potentially tridentate ligand 2,6-bis-(2-thienyl)pyridine (H_2L) reacted with the platinum(II) substrate $K_2[PtCl_4]$ to give cyclometallated complexes exhibiting HL-C,N (40) and L-C,N,C' (41) bonding modes [57].

$$\begin{array}{c|c}
 & S & S & S \\
 & S & N & S \\
 & C & C & C & C \\
 & (40) & (41)
\end{array}$$

The kinetics of thioether displacement from cis-[PtPh₂(Et₂S)₂] by pyridine or substituted pyridines (py) to yield cis-[PtPh₂(py)₂] has been reported [58]. A series of platinum(II) cations containing a N,N',N'''-donor set, eg. [Pt(bpy)(py)₂]²⁺ or [Pt(phen)(py)₂]²⁺, or a N,N',N'',C-donor set, eg. [Pt(Mebpy-H)(bpy)]²⁺, {Mebpy-H = N-methyl-2,2'-bipyridinyl-C(3),N'} have been investigated by cyclic voltammetry, and, in some cases, by epr and UV-VIS-near-IR spectroelectrochemistry [59].

Two cationic platinum(II) quaterpyridine complexes have been synthesised (42) and (43), and characterised by ¹H NMR spectroscopy and X-ray crystallography; both complexes exhibit photoluminescence in the solid state [60]. The Pt(II) complex of the porphyrin based ligand (44) has been prepared, and its absorption spectrum and cyclic voltammogram measured [61]. Treatment of the polymeric amine ligand, polyazaridine (PEI) with K₂[PtCl₄] and [PtCl₂(bpy)]

gave the single species $[Pt(PEI)_4]^{2+}$ and $[Pt(PEI)_2(bpy)]^{2+}$, respectively, whilst reaction with cis- $[PtCl_2(NH_3)_2]$ and $[PtCl_2(en)]$ gave a mixture of products, as determined by UV-VIS and ^{195}Pt NMR spectroscopy [62].

$$\begin{array}{c|c}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & &$$

The platinum phenoxide complex [Pt(OPh)(NCN)] (NCN=C₆H₃{CH₂NMe₂}₂-2,6) has been synthesised by reaction of NaOPh with [Pt(NCN)(H₂O)]BF₄. The complex reacts with excess phenol to form the adduct [Pt(OPh)(NCN)]·HOPh, and the synthesis of the catecholate compound [Pt(NCN)(OC₆H₄OH-2)], possessing an O-H···H hydrogen bond, was reported (47) [64]. An account detailing the synthesis and spectral properties of a series of complexes of the general formula [PtCl(R'R"SO)(1,1-diaminomethylcyclohexane)]NO₃ has appeared [65].

Reaction of 3-ferrocenylpyridine (L) with $[PtCl_4]^{2-}$ gave the square planar complex cis- $[PtCl_2(L)_2]$, which was structurally characterised by X-ray crystallography, and, from cyclic voltammetry, it was shown to undergo two reversible one electron oxidation processes [66]. The compounds $[PtCl_2(dps)]$ and [PtCl(MeOdiene)(dps)] (dps = di-2-pyridylsulfide; MeOdiene = Me-OC₈H₁₂, MeOC₁₀H₁₂) have been prepared, and IR spectral data suggest that for the latter dps⁻ ligand is bound in a monodentate fashion. The synthesis of the complexes [Pt(MeOdiene)(dps)]X ($X = BF_4$, PF_6 , ClO_4) was also accomplished, but in this instance the dps ligand in the cation adopted a N_iN' -chelating bonding mode to platinum [67]. The synthesis and characterisation of three series of dichloroplatinum(II) compounds containing bipyridines disubstituted with perfluoroalkylated side chains has been described [68].

The bis-pyrazolyl ligand 4,4'-dipyrazolylmethane (dpzm) has been employed to prepare dinuclear Pt(II)-Pt(II), Pt(IV)-Pt(IV) and Pt(IV)-Pt(II) complexes containing two bridging dpzm units. The mononuclear complexes cis-[PtCl₂(dmf)(dpzmH)]Cl and cis-[PtCl₄(dmf)(dpzm)]Cl·0.5dmf were also prepared, and the solid state structure of γ -[Cl₂Pt(μ -dpzm)₂PtCl₂]·2dmf (48) was determined from an X-ray diffraction study [69].

Styrylbenzazole ligands (L) (49) based on imidazole, thiazole and oxazole fragments have been used to prepare a series of complexes of general formula cis-[PtCl₂(L)₂], in which the benzazole ligands are coordinated to platinum through nitrogen [70]. Oxazolidine based ligands (50) have been used to synthesise the optically active compounds trans-[PtCl₂(C₂H₄)(50)]; for the complex with R = Et the solid state structure was determined by X-ray diffraction [71].

(49) X=O, S, NH, N-Me
R,
$$R^1$$
 (50) R=Me, Et, Buⁱ, CH₂Ph, Ph

Treatment of $K_2[PtCl_4]$ or $PtCl_2$ with an excess of RCN affords the nitrile complexes $[PtCl_2(NCR)_2]$ (R = Ph, 4-MePh, 4-(CF₃)Ph, 2-MePh, Me, Et, Pr, Prⁱ, Buⁱ) as a mixture of *cis* and *trans* isomers, in different ratios depending upon the experimental conditions [72]. A convenient method for the small scale preparation of *trans*-[PtCl₂(NH₃)₂], suitable for the synthesis of ¹⁵N-labelled compounds, has been described. Using this method, ¹⁵N and ¹⁹⁵Pt spectra have been used to characterise *trans*-diammine-platinum(II) compounds with aqua, chloro, nitrato, sulfato, acetato and phosphato ligands [73].

5.3.3 Complexes with sulfur group donor ligands

Treatment of $[NBu4][\{Pt(C_6X_5)_2(\mu-Cl)\}_2]$ with [NBu4]OH leads to the formation of the dinuclear species $[NBu4][\{Pt(C_6X_5)_2(\mu-OH)\}_2]$ (X=F,Cl), which react with weak protic acids (L-LH), eg. acetylacetone, to give mononuclear complexes of the form $[NBu4][Pt(C_6X_5)_2(L-L)]$ [74]. Reaction of the bis-(phosphine chalcogenides) $CH_2\{P(X)R_2\}\{P(Y)R'_2\}$ (X,Y=O,S,Se) and their corresponding anions $[CH\{P(X)R_2\}\{P(Y)R'_2\}]^-$ with $[PtCl_4\}]^{2-}$, $[Pt_2Cl_4(PEt_3)_2]$ or $[Pt_2Cl_2(PEt_3)_4]^{2+}$ yields a wide variety of coordination compounds. For example, with R=R'=Ph and X=Y=S the following, amongst others, are available: $[PtCl(PEt_3)\{CH(P(S)Ph_2)_2-C,S\}]$ (51) and $[PtCl(PEt_3)\{CH_2(P(S)Ph_2)_2-S,S\}]^+$ (52). In general, the ligands exhibited five different coordination modes, and each has been investigated using NMR spectroscopy [75].

The reaction of thiols (RSH), thioethers (RSR) and disulfides (RSSR) with the platinum compounds [Pt(diene)Cl]Cl (diene = 1,5-diamino-3-azapentane) and [Pt(terpy)Cl]Cl has been investigated by 1 H, 13 C and 195 Pt NMR spectroscopy [76]. The μ -hydroxo complexes [{Pt(C₆X₅)₂(μ -OH)}₂] (X = F, Cl) react with amines, in the presence of CS₂, to give the corresponding dithiocarbamate complexes (53) [77].

Et₃P

Pt

$$CH$$
 CH
 CH
 CH
 CH
 $S=Ph_2$
 CH_2
 $S=Ph_2$
 $S=Ph$

The preparation and properties of platinum(II) complexes possessing bulky sulfoxide ligands have been described. Reactions with (MePhSO) gave the expected complex cis-[PtCl₂(MePhSO)], whereas sterically more demanding sulfoxides gave mono-sulfoxide products, eg. K[PtCl₃(Ph₂SO)]; the molecular structures of both these compounds were determined by X-ray diffraction [78]. Complex formation between [Pt(H₂O)₄]²⁺ and Me₂S, Et₂S, 1,4-dithiane and 1,4-thioxane has been studied by use of stopped-flow and conventional spectrophotometry [79].

Treatment of [PtMe₂(SMe₂)₂] with 0.5 mole equivalents of the dialkenyl chalcogenoether ligands $E(CH_2CH_2CH_2CH_2)_2$ (E = S or Se) gave the dinuclear complexes [Pt₂Me₄{ μ -E(CH₂CH₂CH=CH₂)₂}] (54), which were characterised by X-ray crystallography, and shown to be isostructural. By use of a 1:1 mole ratio of [PtMe₂(SMe₂)₂] and Se(CH₂CH=CH₂)₂, the monomeric complex [PtMe₂{Se(CH₂CH=CH₂)₂}] was obtained. In this instance, coordination to platinum through Se and one alkene unit was found [80].

The series of complexes $[Pt_2Cl_2(\mu-Cl)(\mu-TeAr)(PR_3)_2]$ (Ar = Ph, 4-MePh, 4-MeOPh, 4-EtOPh; PR₃ = PBuⁿ₃, PMe₂Ph) were prepared by treatment of $[Pt_2Cl_2(\mu-Cl)_2(PR_3)_2]$ with NaTeAr. Subsequent treatment of $[Pt_2Cl_2(\mu-Cl)(\mu-TeAr)(PR_3)_2]$ with KBr or KI gave the corresponding bromo- and iodo-bridged analogues, and reaction with pyrazole or 3,5-dimethylpyrazole, in the presence of NaOH, yielded $[Pt_2Cl_2(\mu-pz)(\mu-TeAr)(PR_3)_2]$; the X-ray crystal structure of $[Pt_2Cl_2(\mu-Cl)(\mu-TePh)(PBu^n_3)_2]$ was determined [81]. The synthesis and spectroscopic characterisation of $[PtX_2(L)_2]$ (X = Cl, Br, I; L = C₄H₈Te) has been reported [82].

5.3.4 Complexes with mixed donor ligands

Treatment of the Z-exo-phosphine PPh₂C₁₀H₁₅NNMe₂ with [PtX₂(COD)] (X = Cl, Me) gave the compounds (55). The exo-phosphine converted to an exo/endo-mixture, and reaction of this mixture with [PtX₂(cod)] gave the corresponding mixed Z-exo/endo-chelate complexes. All the complexes were fully characterised, with particular attention to determining the stereochemistry at C(3) on the camphor residue [83]. The P-N donor ligand complex [PtCl(η^2 -cyclenP)(PPh₃)] (56) reacted with dppe to form the bis-didentate derivative [Pt(η^2 -cyclenP)(η^2 -dppe)]Cl. On the other hand, reaction with dppm affords the η^1 -dppm product [PtCl(η^2 -cyclenP)(η^1 -dppm)], which, upon treatment with NaBPh₄, gives a mixture of compounds, one of which is proposed to be the bis-chelate complex [Pt(η^2 -cyclenP)(η^2 -dppm)]BPh₄ [84].

Reaction of [PtCl₂(bpy)] with α -pyrrolidine gave the α -pyrrolidonato bridged dinuclear complex [Pt₂(bpy)₂(α -pyrrolidonato)₂]²⁺. The solid state structure of the complex was evaluated using *X*-ray diffraction techniques, and was shown to adopt a 'head to tail' arrangement of the N-O ligands (57) [85].

The mono- and bis-chelate ligands bis-[o-(methylthio)phenyl]phenylphosphine and tris-[o-(methylthio)phenyl]phosphine react with platinum(II) substrates to form $[Pt\{PPh(C_6H_4SMe-o)_2\}Cl_2]$ and $[Pt\{P(C_6H_4SMe-o)_3\}_2]^{2+}$ complexes, repsectively, in which the ligands are P/S chelated to platinum [86]. Platinum(II) complexes $[Pt(N,Te)(ClO_4)_2]$, $[Pt(N,Te)](ClO_4)_2$ and $[PtCl_2(N,Te)_2]$ exhibiting N,Te-chelation have been described for the mixed donor ligand 1-(NMe₂)-2-(TeC₆H₄OEt)-4-MeC₆H₃ [87].

$$\begin{pmatrix}
N_{m_{m_{N}}} & Pt & N \\
N_{m_{N}} & Pt & N
\end{pmatrix}$$

$$\begin{pmatrix}
N_{m_{N}} & Pt & N \\
N & N
\end{pmatrix}$$

$$\begin{pmatrix}
N_{m_{N}} & Pt & N \\
N & N
\end{pmatrix}$$

$$\begin{pmatrix}
S & 7 & 0 \\
0 & 0 \\
0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
S & 7 & 0 \\
0 & 0 \\
0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
S & 7 & 0 \\
0 & 0 \\
0 & 0
\end{pmatrix}$$

5.4 PLATINUM(I)

The reaction of $[MX_2(R_2Ppy-P)_2]$ (R = Me, Ph) with $[M'_2(dba)_3]$ (dba = dibenzylideneacetone) has been employed to prepare platinum(I)-platinum(I) and platinum(I)-palladium(I) dimers, $[MM'X_2(\mu-R_2Ppy)_2]$ [M,M' = Pd(I), Pt(I)]. Initially 'head to head' dimers were formed, but these isomerised to the 'head to tail' form, eg. (58) [88, 89]. Single crystal X-ray diffraction structures were reported for the complexes $[PdPtCl_2(\mu-Me_2Ppy)_2]$ and $[Pt_2Cl_2(\mu-Me_2Ppy)_2]$ [90].

Treatment of $[Pt_2Cl_2(\mu-dppm)_2]$ with an excess of NO^+A^- ($A=BF_4$, PF_6) leads to isolation of the stable cationic species $[Pt_2Cl_2(\mu-NO)(\mu-dppm)_2]^+$. Reaction of the corresponding halogeno-complexes $[Pt_2X_2(\mu-dppm)_2]$ with $NOBF_4$ gave the analogous compounds $[Pt_2X_2(\mu-NO)(\mu-dppm)_2]BF_4$ (X=Br, I). The crystal structure of $[Pt_2Cl_2(\mu-NO)(\mu-dppm)_2]^+$ was determined by an X-ray diffraction study, and confirmed the presence of an A-frame structure (59) [91]. Two-dimensional ^{31}P homonuclear shift correlated spectroscopy has been applied to the analysis of a series of dinuclear Pt(I) complexes containing phosphine ligands. On the basis of the spectra it was established that cross-peak positions of the Pt-P satellite signals can be used to determine the sign and magnitude of the $^2J_{Pt-P}$ coupling constant [92].

5.5 PLATINUM(0)

Cyclohexyneplatinum(0) complexes $[Pt(C_6H_8)L_2]$ (L = PBu^t_2Ph , PBu^tPh_2) have been prepared by reaction of the complexes $[PtL_2]$ with 1,2-dibromocyclohexane and 1% Na/Hg. The reactivity of the complexes with HCl, and with MeOH, in the presence and absence of O_2 , was explored [93]. Reductive elimination of *neo*pentane from (60) at ambient temperature, generates the reactive 14-electron intermediate (61) in situ [94].

$$\begin{array}{c|c}
B u_2 \\
P_{11111} \\
P t \\
H \\
\end{array}$$

$$\begin{array}{c|c}
B u_2 \\
P_{11111} \\
P \\
B u_2
\end{array}$$

$$\begin{array}{c|c}
P t \\
P \\
B u_2
\end{array}$$

$$\begin{array}{c|c}
B u_2 \\
P_{11111} \\
P \\
B u_2
\end{array}$$

$$\begin{array}{c|c}
P t \\
P \\
B u_2
\end{array}$$

$$\begin{array}{c|c}
(60) \\
\end{array}$$

The platinum(0) complex [Pt{P(OC₆H₄OMe-2)₃}₃], containing the new ligand P(OC₆H₄OMe-2)₃, has been prepared by a variety of routes, including reduction of the corresponding dichloroplatinum(II) complex, or by ligand exchange reactions between the phosphite and [Pt(η^2 -C₂H₄)₃] or [Pt(η^2 -norbornene)₃] [95]. The first X-ray structure for a platinum dibenzylideneacetone compound has been reported [96]. A convenient synthetic route for the production of platinum(0)-phosphine complexes has been described; the procedure involves reduction of platinum(II)-phosphine complexes using fluoride [97].

REFERENCES

- 1. P.K. Byers, A.J. Canty and R.T. Honeyman, J. Organomet. Chem., 433 (1992) 223.
- A. Peloso, Polyhedron, 17 (1992) 2187.
- 3. P.V. Bernhardt, G.A. Lawrance and T.W. Hambley, Inorg. Chem., 31 (1992) 631.
- 4. J.C. Muijsers, J.W. Niemantsverdriet, I.C.M. Wehman-Ooyevaar, D.M. Grove and G. van Koten, *Inorg. Chem.*, 31 (1992) 2655.

- M. Crespo, M. Martinez and J. Sales, J. Chem. Soc., Chem. Commun., (1992) 822. 5.
- 6. T.G. Appleton, K.A. Byriel, J.R. Hall, C.H.L. Kennard and M.T. Mathieson, J. Am. Chem. Soc., 114 (1992) 7305.
- 7. L.A.M. Baxter, G.A. Heath, R.G.Rapto and A.C. Willis, J. Am. Chem. Soc., 114 (1992) 6944.
- 8. A. Klein, H.D. Hausen and W. Kaim, J. Organomet. Chem., 440 (1992) 207.
- 9. M. Geoffroy, G. Bernardinelli, P. Castan, H. Chemette, D. Deguenon, S. Nour, J. Weber and M. Wermeille, Inorg. Chem., 31 (1992) 5056.
- B.L. Shaw and J.D. Vessey, J. Chem. Soc., Dalton Trans., (1992) 1929. 10
- K.A. Fallis, G.K. Anderson and N.P. Rath, Organometallics, 11 (1992) 885. 11.
- M. Lin, K.A. Fallis, G.K. Anderson, N.P. Rath and M.Y. Chiang, J. Am. Chem. Soc., 114 (1992) 4687.
- 13. G.-L. Huang, T.-M. Huang and J.-T. Chen, *Inorg. Chem.*, 31 (1992) 4034.
- P.J. Stang and Z. Zhong, Organometallics, 11 (1992) 1026.
- P. Bergamini, E. Costa, S. Sostero, A.G. Orpen and P.G. Pringle, Organometallics, 11 (1992) 15.
- 16. R.K. Merwin, R.C. Schnabel, J.D. Koola and D.M. Roddick, Organometallics, 11 (1992) 2972.
- 17. N. Carr, L. Mole, A.G. Orpen and J.L. Spencer, J. Chem. Soc., Dalton Trans., (1992) 2653.
- F. Ozawa, T. Son, S. Ebina, K. Osakada and A. Yamamoto, Organometallics, 11 (1992) 171. J.-T. Chen, T.-M. Huang, M.-C. Cheng, Y.-C. Lin and Y. Wang, Organometallics, 11 (1992) 19. 1761.
- 20. J. Fornies, M.A. Gómez-Saso, E. Lalinde, F. Martínez and M.T. Moreno, Organometallics, 11 (1992) 2873.
- 21. K. Onitsuka, T. Joh and S. Takahashi, Bull. Chem. Soc. Jpn., 65 (1992) 1179.
- 22. M.J. Michalczyk, C.A. Recatto, J.C. Calabrese and M.J. Fink, J. Am. Chem. Soc., 114 (1992)
- 23. H. Yamashita, M. Tanaka and M. Goto, Organometallics, 11 (1992) 3227.
- 24. R.H. Heyn and T.D. Tilley, J. Am. Chem. Soc., 114 (1992) 1917.
- 25. H. Yamashita, T. Kobayashi, M. Tanaka, J.A. Samuels and W.E. Streib, Organometallics, 11 (1992) 2330.
- 26. D.R. Schaad and C.R. Landis, Organometallics, 11 (1992) 2024.
- 27. T. Chivers and R,W. Hilts, *Inorg. Chem.*, 31 (1992) 5272.
- 28. R.D.W. Kemmitt, S. Mason, M.R. Moore and D.R. Russell, J. Chem. Soc, Dalton Trans., (1992) 409.
- 29. W. Henderson, R.D.W. Kemmitt, S. Mason, M.R. Moore, J. Fawcett and D.R. Russell, J. Chem. Soc., Dalton Trans., (1992) 59.
- 30. Y. Nakatsu, Y. Nakamura, K. Matsumoto and S. Ooi, Inorg. Chim. Acta, 196 (1992) 81.
- 31. V.K. Jain and S. Kannan, Polyhedron, 11 (1992) 27.
- 32. K. Ohkita, H. Kurosawa, T. Hasegawa, T. Shirafuji and I. Ikeda, Inorg. Chim. Acta, 198-200 (1992) 275.
- 33. R.D.W. Kemmitt, S. Mason, J. Fawcett and D.R. Russell, J. Chem. Soc., Dalton Trans., (1992) 851.
- 34. D.L. Oliver and G.K. Anderson, Polyhedron, 11 (1992) 2415.
- 35. M. Capdevila, P. González-Duarte, I. Mira, J. Sola and W. Clegg, *Polyhedron*, 11 (1992) 3091.
- A.K. Fazlur-Rahman and J.G. Verkade, Inorg. Chem., 31 (1992) 5331.
- 37. A.L. Bandini, G. Banditelli, E. Cesarotti, G. Minghetti and B. Bovio, *Inorg. Chem.*, 31 (1992)
- 38. M.R. Mason, C.M. Duff, L.L. Miller, R.A. Jacabson and J.G. Verkade, *Inorg. Chem.*, 31 (1992)
- 39. K.B. Dillon and H.P. Goodwin, J. Organomet. Chem., 429 (1992) 169.
- 40. S.D. Perera, B.L. Shaw, M. Thornton-Pett and J.D. Vessey, *Inorg. Chim. Acta*, 198-200 (1992)
- 41. M.S. Balakrishna and S.S. Krishnamurthy, J. Organomet, Chem., 424 (1992) 243.
- A. Varshney, M.L. Webster and G.M. Gray, Inorg. Chem., 31 (1992) 2580. 42.
- H. Goller and P. Brüggller, Inorg. Chim. Acta, 197 (1992) 75. 43.
- 44. C. Vogler, B. Schwederski, A. klein and W. Kaim, J. Organomet. Chem., 436 (1992) 367.
- 45. L.M. Scolaro, G. Alibrandi, R. Romeo, V. Ricevuto and S. Campagna, *Inorg. Chem.*, 31 (1992)
- 46. G. López, J. Ruiz, C. Vicente, J.M. Martí, G. García, P.A. Chaloner, P.B. Hitchcock and R, M. Harrison, Organometallics, 11 (1992) 4090.
- 47. G. López, J. Ruiz, G. García, C. Vicente, V. Rodriguez, G. Sánchez, J.A. Hermoso and M. Martinez-Ripoll, J. Chem. Soc., Dalton Trans., (1992) 1681.
- 48. C.B. Blanton, Z. Murtaza, R.J. Shaver and D.P. Rillema, *Inorg. Chem.*, 31 (1992) 3230.

- V.G. Albano, C. Castellari, M. Monari, V. De Felice, A. Panunzi and F. Fuffo, Organometallics, 11 (1992) 3665.
- 50. V.G. Albano, C. Castellari, V. De Felice, A. Panunzi and F. Ruffo, J. Organomet. Chem., 425 (1992) 177.
- 51. V. De Felice, M.L. Ferrara, A. Panunzi and F. Ruffo, J. Organomet. Chem., 438 (1992) C49.
- 52. S. Bartolucci, P. Carpinelli, V. De Felice, B. Giovannitti and A. De Renzi, *Inorg. Chim. Acta.*, 197 (1992) 51.
- 53. F.P. Fanizzi, L. Maresca, G. Natile, M. Lanfranchi, A. Tiripcchio and G. Pacchioni, J. Chem. Soc., Dalton Trans., (1992) 333.
- 54. F.P. Fanizzi, F.P. Intini, L. Maresca and G. Natile, J. Chem. Soc., Dalton Trans., (1992) 309.
- C.M. Anderson, M. Crespo, G. Ferguson, A.J. Lough and R.J. Puddephatt, Organometallics, 11 (1992) 1177.
- M. Crespo, M. Martinez, J. Sales, X. Solans and M. Font-Bardía, Organometallics, 11 (1992) 1288.
- 57. E.C. Constable, R.P.G. Henney and D.A. Tocher, J. Chem. Soc., Dalton Trans., (1992) 2467.
- 58. R. Romeo, A. Grassi and L.M. Scolaro, Inorg. Chem., 31 (1992) 4383.
- P.S. Braterman, J.-I. Song, F.M. Wimmer, S. Wimmer, W. Kaim, A. Klein and R.D. Peacock, Inorg. Chem., 31 (1992) 5084.
- 60. C.-W. Chan, C.-M. Che, M.C. Cheng and Y. Wang., Inorg. Chem., 31 (1992) 4874.
- 61. K. Takahashi, Y. Aoki, T. Sugitani, F. Moriyama, Y. Tomita, M. Handa and K. Kasuga, *Inorg. Chim. Acta*, 201 (1992) 247.
- 62. L. Barbosa and A. von Zelewsky, *Inorg. Chem.*, 31 (1992) 2300.
- 63. M. Capdevila, W. Clegg, P. González-Duarte and I. Mira, J. Chem. Soc., Dalton Trans., (1992)
- P.L. Alsters, P.J. Baesjou, M.D. Janssen, H. Kooijman, A. Sicherer-Roetman, A.L. Spek and G. van Koten, Organometallics, 11 (1992) 4124.
- 65. J. Landi, M.P. Hacker and N. Farrell, *Inorg. Chim. Acta*, 202 (1992) 79.
- O. Carugo, G. De Santis, L. Fabbrizzi, M. Licchelli, A. Monichino and P. Pallavicini, *Inorg. Chem.*, 31 (1992) 765.
- 67. G. Tresoldi, E. Rotondo, P. Piraino, M. Lanfranchi and A. Tiripicchio, *Inorg. Chim. Acta*, 194 (1992) 233.
- 68. N. Garelli and P. Vierling, Inorg. Chim. Acta, 194 (1992) 247.
- 69. J.A. Broomhead, L.M. Rendina and M. Sterns, Inorg. Chem., 31 (1992) 1880.
- 70. M.M. Muir, O. Cox, L.A. Rivera, M.E. Cadiz and E. Medina, *Inorg. Chim. Acta*, 191 (1992) 131.
- 71. A. Albinati, F. Lianza, H. Berger, C. Arz and P.S. Pregosin, *Inorg. Chim. Acta*, 198-200 (1992) 771.
- 72. D. Fraccarollo, R. Bertani, M. Mozzon, U. Belluco and R.A. Michelin, *Inorg. Chim. Acta*, 201 (1992) 15.
- 73. T.G. Appleton, A.J. Bailey, K.J. Barnham and J.R. Hall, *Inorg. Chem.*, 31 (1992) 3077.
- G. López, J. Ruiz, G. Garcia, C. Vicente, J.M. Marti, J.A. Hermoso, A. Vegas and M. Martinez-Ripoll, J. Chem. Soc., Dalton Trans., (1992) 53.
- 75. D.E. Berry, J. Browning, K.R. Dixon, R.W. Hilts and A. Pidcock, *Inorg. Chem.*, 31 (1992) 1479.
- 76. A.K. Fazlur-Rahman and J.G. Verkade, *Inorg. Chem.*, 31 (1992) 2064.
- G. López, J. Ruiz, G. García, C. Vicente, J.M. Martí and V. Rodríguez, J. Organomet. Chem., 436 (1992) 121.
- 78. S.G. de Almeida, J.L. Hubbard and N. Farrell, Inorg. Chim. Acta, 193 (1992) 149.
- 79. S. Elmroth, Z. Bugarcic and L.I. Elding, *Inorg. Chem.*, 31 (1992) 3551.
- 80. E.W. Abel, D.G. Evans, J.R. Koe, M.B. Hursthouse and M. Mazid, J. Chem. Soc., Dalton Trans., (1992) 663.
- 81. V.K. Jain, S. Kannan and R. Bohra, Polyhedron, 11 (1992) 1551.
- 82. T. Kemmitt, W. Levason, R.D. Oldroyd and M. Webster, Polyhedron, 11 (1992) 2165.
- 83. S.D. Perera, B.L. Shaw and M. Thornton-Pett, J. Chem. Soc, Dalton Trans., (1992) 999.
- 84. D.V. Khasnis, M. Lattman, U. Siriwardane and H. Zhang, Organometallics, 11 (1992) 2074.
- 85. K. Matsumoto, K. Harashima, H. Moriyama and T. Sato, Inorg. Chim. Acta, 197 (1992) 217.
- 86. E.W. Abel, J.C. Dormer, D. Ellis, K.G. Orrell, V. Sik, M.B. Hursthouse and M.A. Mazid, J. Chem. Soc., Dalton Trans., (1992) 1073.
- 87. B.L. Khandelwal and K. Uppal, *Polyhedron*, 11 (1992) 1755.
- 88. T. Suzuki and J. Fujita, Bull. Chem. Soc. Jpn., 65 (1992) 1016.
- 89. Y. Xie, C.-L. Lee, Y. Yang, S.J. Rettig and B.R. James, Can. J. Chem., (1992) 751.

- T. Suzuki, N. Iitaka, S. Kurachi, M. Kita, K. Kashiwabara, S. Ohba and J. Fujita, Bull. Chem. Soc. Jpn., 65 (1992) 1817.
- F. Neve, M. Ghedini, A. Tiripicchio and F. Ugozzoli, *Organometallics*, 11 (1992) 795. J.V.Z. Krevor, U. Simonis, A. Karson, C. Castro and M. Aliakbar, *Inorg. Chem.*, 31 (1992) 312. 92.
- 93. M.A. Bennett, H.- G. Fick and G.F. Warnock, Aust. J. Chem., 45 (1992) 135.
- 94. P. Hofmann and G. Unfried, Chem. Ber., 125 (1992) 659.
- 95. M.J. Baker, K.N. Harrison, A.G. Orpen, P.G. Pringle and G. Shaw, J. Chem Soc., Dalton Trans., (1992) 2607.
- L.N. Lewis, T.A. Krafft and J.C. Huffman, *Inorg. Chem.*, 31 (1992) 3555.
 M.R. Mason and J.G. Verkade, *Organometallics*, 11 (1992) 2212.